Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38003681

RESUMO

Mitochondrial dysfunction contributes to numerous chronic diseases, and mitochondria are targets for various toxins and xenobiotics. Therefore, the development of drugs or therapeutic strategies targeting mitochondria is an important task in modern medicine. It is well known that the primary, although not the sole, function of mitochondria is ATP generation, which is achieved by coupled respiration. However, a high membrane potential can lead to uncontrolled reactive oxygen species (ROS) production and associated dysfunction. For over 50 years, scientists have been studying various synthetic uncouplers, and for more than 30 years, uncoupling proteins that are responsible for uncoupled respiration in mitochondria. Additionally, the proteins of the mitochondrial alternative respiratory pathway exist in plant mitochondria, allowing noncoupled respiration, in which electron flow is not associated with membrane potential formation. Over the past two decades, advances in genetic engineering have facilitated the creation of various cellular and animal models that simulate the effects of uncoupled and noncoupled respiration in different tissues under various disease conditions. In this review, we summarize and discuss the findings obtained from these transgenic models. We focus on the advantages and limitations of transgenic organisms, the observed physiological and biochemical changes, and the therapeutic potential of uncoupled and noncoupled respiration.


Assuntos
Doenças Metabólicas , Consumo de Oxigênio , Animais , Animais Geneticamente Modificados , Mitocôndrias/metabolismo , Respiração Celular , Doenças Metabólicas/metabolismo , Respiração , Espécies Reativas de Oxigênio/metabolismo
2.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298073

RESUMO

Agricultural plants are continuously exposed to environmental stressors, which can lead to a significant reduction in yield and even the death of plants. One of the ways to mitigate stress impacts is the inoculation of plant growth-promoting rhizobacteria (PGPR), including bacteria from the genus Azospirillum, into the rhizosphere of plants. Different representatives of this genus have different sensitivities or resistances to osmotic stress, pesticides, heavy metals, hydrocarbons, and perchlorate and also have the ability to mitigate the consequences of such stresses for plants. Bacteria from the genus Azospirillum contribute to the bioremediation of polluted soils and induce systemic resistance and have a positive effect on plants under stress by synthesizing siderophores and polysaccharides and modulating the levels of phytohormones, osmolytes, and volatile organic compounds in plants, as well as altering the efficiency of photosynthesis and the antioxidant defense system. In this review, we focus on molecular genetic features that provide bacterial resistance to various stress factors as well as on Azospirillum-related pathways for increasing plant resistance to unfavorable anthropogenic and natural factors.


Assuntos
Azospirillum , Plantas , Plantas/microbiologia , Bactérias , Reguladores de Crescimento de Plantas/metabolismo , Desenvolvimento Vegetal , Raízes de Plantas/metabolismo
3.
Mol Neurobiol ; 60(8): 4288-4303, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37074549

RESUMO

Mitochondrial dysfunction in the ischemic brain is one of the hallmarks of stroke. Dietary interventions such as the ketogenic diet and hydroxycitric acid supplementation (a caloric restriction mimetic) may potentially protect neurons from mitochondrial damage induced by focal stroke in mice. We showed that in control mice, the ketogenic diet and the hydroxycitric acid did not impact significantly on the mtDNA integrity and expression of genes involved in the maintenance of mitochondrial quality control in the brain, liver, and kidney. The ketogenic diet changed the bacterial composition of the gut microbiome, which via the gut-brain axis may affect the increase in anxiety behavior and reduce mice mobility. The hydroxycitric acid causes mortality and suppresses mitochondrial biogenesis in the liver. Focal stroke modelling caused a significant decrease in the mtDNA copy number in both ipsilateral and contralateral brain cortex and increased the levels of mtDNA damage in the ipsilateral hemisphere. These alterations were accompanied by a decrease in the expression of some of the genes involved in maintaining mitochondrial quality control. The ketogenic diet consumption before stroke protects mtDNA in the ipsilateral cortex, probably via activation of the Nrf2 signaling. The hydroxycitric acid, on the contrary, increased stroke-induced injury. Thus, the ketogenic diet is the most preferred variant of dietetic intervention for stroke protection compared with the hydroxycitric acid supplementation. Our data confirm some reports about hydroxycitric acid toxicity, not only for the liver but also for the brain under stroke condition.


Assuntos
DNA Mitocondrial , Dieta Cetogênica , Camundongos , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Encéfalo/metabolismo , Fígado/metabolismo
4.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047089

RESUMO

Cisplatin is a platinum-based cytostatic drug that is widely used for cancer treatment. Mitochondria and mtDNA are important targets for platinum-based cytostatics, which mediates its nephrotoxicity. It is important to develop therapeutic approaches to protect the kidneys from cisplatin during chemotherapy. We showed that the exposure of mitochondria to cisplatin increased the level of lipid peroxidation products in the in vitro experiment. Cisplatin caused strong damage to renal mtDNA, both in the in vivo and in vitro experiments. Cisplatin injections induced oxidative stress by depleting renal antioxidants at the transcriptome level but did not increase the rate of H2O2 production in isolated mitochondria. Methylene blue, on the contrary, induced mitochondrial H2O2 production. We supposed that methylene blue-induced H2O2 production led to activation of the Nrf2/ARE signaling pathway. The consequences of activation of this signaling pathway were manifested in an increase in the expression of some antioxidant genes, which likely caused a decrease in the amount of mtDNA damage. Methylene blue treatment induced an increase in the expression of genes that were involved in the base excision repair (BER) pathway: the main pathway for mtDNA reparation. It is known that the expression of these genes can also be regulated by the Nrf2/ARE signaling pathway. We can assume that the protective effect of methylene blue is related to the activation of Nrf2/ARE signaling pathways, which can activate the expression of genes related to antioxidant defense and mtDNA reparation. Thus, the protection of kidney mitochondria from cisplatin-induced damage using methylene blue can significantly expand its application in medicine.


Assuntos
Antineoplásicos , Cisplatino , Cisplatino/toxicidade , Cisplatino/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Azul de Metileno/farmacologia , DNA Mitocondrial/metabolismo , Peróxido de Hidrogênio/metabolismo , Antineoplásicos/toxicidade , Mitocôndrias/metabolismo , Estresse Oxidativo
5.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499517

RESUMO

In this research, we compared the cognitive parameters of 2-, 7-, and 15-month-old mice, changes in mitochondrial DNA (mtDNA) integrity and expression of genes involved in the nuclear erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling pathway. We showed an age-related decrease in the Nfe2l2 expression in the cerebral cortex, not in the hippocampus. At the same time, we find an increase in the mtDNA copy number in the cerebral cortex, despite the lack of an increase in gene expression, which is involved in the mitochondrial biogenesis regulation. We suppose that increase in mtDNA content is associated with mitophagy downregulation. We supposed that mitophagy downregulation may be associated with an age-related increase in the mtDNA damage. In the hippocampus, we found a decrease in the Bdnf expression, which is involved in the pathways, which play an essential role in regulating long-term memory formation. We showed a deficit of working and reference memory in 15-month-old-mice in the water Morris maze, and a decrease in the exploratory behavior in the open field test. Cognitive impairments in 15-month-old mice correlated with a decrease in Bdnf expression in the hippocampus, Nfe2l2 expression, and an increase in the number of mtDNA damage in the cerebral cortex. Thus, these signaling pathways may be perspective targets for pharmacological intervention to maintain mitochondrial quality control, neuronal plasticity, and prevent the development of age-related cognitive impairment.


Assuntos
Disfunção Cognitiva , DNA Mitocondrial , Animais , Camundongos , Elementos de Resposta Antioxidante/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Hipocampo/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Transdução de Sinais , Dano ao DNA
6.
Biochemistry (Mosc) ; 87(9): 940-956, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36180986

RESUMO

Methylene blue (MB) is the first fully synthetic compound that had found its way into medicine over 120 years ago as a treatment against malaria. MB has been approved for the treatment of methemoglobinemia, but there are premises for its repurposing as a neuroprotective agent based on the efficacy of this compound demonstrated in the models of Alzheimer's, Parkinson's, and Huntington's diseases, traumatic brain injury, amyotrophic lateral sclerosis, depressive disorders, etc. However, the goal of this review was not so much to focus on the therapeutic effects of MB in the treatment of various neurodegeneration diseases, but to delve into the mechanisms of direct or indirect effect of this drug on the signaling pathways. MB can act as an alternative electron carrier in the mitochondrial respiratory chain in the case of dysfunctional electron transport chain. It also displays the anti-inflammatory and anti-apoptotic effects, inhibits monoamine oxidase (MAO) and nitric oxide synthase (NOS), activates signaling pathways involved in the mitochondrial pool renewal (mitochondrial biogenesis and autophagy), and prevents aggregation of misfolded proteins. Comprehensive understanding of all aspects of direct and indirect influence of MB, and not just some of its effects, can help in further research of this compound, including its clinical applications.


Assuntos
Fármacos Neuroprotetores , Azul de Metileno/metabolismo , Azul de Metileno/farmacologia , Azul de Metileno/uso terapêutico , Mitocôndrias/metabolismo , Monoaminoxidase/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Óxido Nítrico Sintase/metabolismo
7.
Metab Brain Dis ; 37(7): 2497-2510, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35881298

RESUMO

Mildronate (MD) is a cardioprotective drug used for the treatment of cardiovascular diseases by switching metabolism from the fatty acids to glucose oxidation. This effect is achieved via inhibition of synthesis of L-carnitine (L-car), a common supplement, which is used for improving of fatty acid metabolism. Both MD and L-car have similar neuroprotective effect. Our goal was to investigate the effect of two drugs on the cognitive parameters of mice under different conditions (aging and lipopolysaccharide (LPS)-induced inflammation). We showed that L-car partly improved the memory and decreased the extent of mtDNA damage in the hippocampus of mice with the LPS-induced inflammation. L-car induced mitochondrial biogenesis and mitophagy in the Nrf2-dependent manner. Both MD and L-car upregulated expression of genes involved in the mitochondrial quality control. In 15-month-old mice, MD improved long-term and short-term memory, reduced the extent of mtDNA damage, and decreased the concentration of diene conjugates in the hippocampus in the Nrf2-independent manner. L-car as a Nrf2 activator had a better neuroprotective effect by normalizing mitochondrial quality control in the reversible cognitive impairment caused by the LPS-induced inflammation, while MD had a better neuroprotective effect in the irreversible cognitive impairment in aged mice, possibly due to a deeper restructuring of metabolism and reduction of oxidative stress.


Assuntos
Carnitina , Fármacos Neuroprotetores , Ratos , Animais , Camundongos , Carnitina/farmacologia , Carnitina/uso terapêutico , Carnitina/metabolismo , Lipopolissacarídeos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fator 2 Relacionado a NF-E2 , Ratos Wistar , Ácidos Graxos , Glucose , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , DNA Mitocondrial , Cognição
8.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35890114

RESUMO

Cisplatin is a cytotoxic chemotherapeutic drug that leads to DNA damage and is used in the treatment of various types of tumors. However, cisplatin has several serious adverse effects, such as deterioration in cognitive ability. The aim of our work was to study neuroprotectors capable of preventing cisplatin-induced neurotoxicity. Methylene blue (MB) and AzurB (AzB) are able to neutralize the neurotoxicity caused by cisplatin by protecting nerve cells as a result of the activation of the Ntf2 signaling pathway. We have shown that cisplatin impairs learning in the Morris water maze. This is due to an increase in the amount of mtDNA damage, a decrease in the expression of most antioxidant genes, the main determinant of the induction of which is the Nrf2/ARE signaling pathway, and genes involved in mitophagy regulation in the cortex. The expression of genes involved in long-term potentiation was suppressed in the hippocampus of cisplatin-injected mice. MB in most cases prevented cisplatin-induced impairment of learning and decrease of gene expression in the cortex. AzB prevented the cisplatin-induced decrease of genes in the hippocampus. Also, cisplatin induced disbalance in the gut microbiome, decreased levels of Actinotalea and Prevotella, and increased levels of Streptococcus and Veillonella. MB and AzB also prevented cisplatin-induced changes in the bacterial composition of the gut microbiome.

9.
Pestic Biochem Physiol ; 183: 105056, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35430060

RESUMO

Pesticides can seriously affect the respiratory chain of the mitochondria of many crops, reducing the intensity of plant growth and its yield. Studying the effect of pesticides on the bioenergetic parameters of intact plant mitochondria is a promising approach for assessing their toxicity. In this study, we investigated the effect of some pesticides on isolated potato mitochondria, which used exogenous NADH as a substrate for respiration. We showed that succinate is the most preferred substrate for phosphorylating respiration of intact potato tubers mitochondria. Potato mitochondria poorly oxidize exogenous NADH, despite of the presence of external NADH dehydrogenases. Permeabilization of the mitochondrial membrane with alamethicin increased the availability of exogenous NADH to complex I. However, the pathway of electrons through complex I to complex IV makes intact potato mitochondria susceptible to a number of pesticides such as difenoconazole, fenazaquin, pyridaben and tolfenpyrad, which strongly inhibit the rate of mitochondrial respiration. However, these pesticides only slightly inhibited the rate of oxygen consumption during succinate-supported respiration. Dithianon, the inhibitor of Complex II, is the only pesticide which significantly increased the respiratory rate of NADH-supported respiration of permeabilized mitochondria of potato. Thus, it can be assumed that the alternative NADH dehydrogenases for electron flow represent a factor responsible for plant resistance to xenobiotics, such as mitochondria-targeted pesticides.


Assuntos
Praguicidas , Solanum tuberosum , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias , NAD/metabolismo , NAD/farmacologia , Praguicidas/metabolismo , Praguicidas/toxicidade , Respiração , Solanum tuberosum/metabolismo , Ácido Succínico/metabolismo , Ácido Succínico/farmacologia
10.
FEBS J ; 289(18): 5697-5713, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35373508

RESUMO

Age-related impairment of coordination of the processes of maintaining mitochondrial homeostasis is associated with a decrease in the functionality of cells and leads to degenerative processes. mtDNA can be a marker of oxidative stress and tissue degeneration. However, the mechanism of accumulation of age-related damage in mtDNA remains unclear. In the present study, we analyzed the accumulation of mtDNA damage in several organs of rats during aging and the possibility of reversing these alterations by dietary restriction (DR). We showed that mtDNA of brain compartments (with the exception of the cerebellum), along with kidney mtDNA, was the most susceptible to accumulation of age-related damage, whereas liver, testis, and lung were the least susceptible organs. DR prevented age-related accumulation of mtDNA damage in the cortex and led to its decrease in the lung and testis. Changes in mtDNA copy number and expression of genes involved in the regulation of mitochondrial biogenesis and mitophagy were also tissue-specific. There was a tendency for an age-related decrease in the copy number of mtDNA in the striatum and its increase in the kidney. DR promoted an increase in the amount of mtDNA in the cerebellum and hippocampus. mtDNA damage may be associated not only with the metabolic activity of organs, but also with the lipid composition and activity of processes associated with the isoprostanes pathway of lipid peroxidation. The comparison of polyunsaturated fatty acids and oxylipin profiles in old rats showed that DR decreased the synthesis of arachidonic acid and its metabolites synthesized by the cyclooxygenase, cytochrome P450 monooxygenases and lipoxygenase metabolic pathways.


Assuntos
DNA Mitocondrial , Oxilipinas , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Ácidos Araquidônicos , Dano ao DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Isoprostanos , Lipoxigenases/genética , Lipoxigenases/metabolismo , Masculino , Estresse Oxidativo , Prostaglandina-Endoperóxido Sintases/genética , Ratos
11.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328391

RESUMO

It is well known that pesticides are toxic for mitochondria of animals. The effect of pesticides on plant mitochondria has not been widely studied. The goal of this research is to study the impact of metribuzin and imidacloprid on the amount of damage in the mtDNA of potato (Solanum tuberosum L.) in various conditions. We developed a set of primers to estimate mtDNA damage for the fragments in three chromosomes of potato mitogenome. We showed that both metribuzin and imidacloprid considerably damage mtDNA in vitro. Imidacloprid reduces the rate of seed germination, but does not impact the rate of the growth and number of mtDNA damage in the potato shoots. Field experiments show that pesticide exposure does not induce change in aconitate hydratase activity, and can cause a decrease in the rate of H2O2 production. We can assume that the mechanism of pesticide-induced mtDNA damage in vitro is not associated with H2O2 production, and pesticides as electrophilic substances directly interact with mtDNA. The effect of pesticides on the integrity of mtDNA in green parts of plants and in crop tubers is insignificant. In general, plant mtDNA is resistant to pesticide exposure in vivo, probably due to the presence of non-coupled respiratory systems in plant mitochondria.


Assuntos
Praguicidas , Solanum tuberosum , Animais , Cromossomos , DNA Mitocondrial/genética , Peróxido de Hidrogênio , Mitocôndrias/genética , Praguicidas/toxicidade , Solanum tuberosum/genética
12.
Life Sci ; 293: 120333, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35051422

RESUMO

Ageing is the most significant risk factor for cardiovascular diseases. l-Carnitine has a potent cardioprotective effect and its synthesis decreases during ageing. At the same time, there are pharmaceuticals, such as mildronate which, on the contrary, are aimed at reducing the concentration of l-carnitine in the heart and lead to slows down the oxidation of fatty acids in mitochondria. Despite this, both l-carnitine and mildronate are positioned as cardio protectors. We showed that l-carnitine supplementation to the diet of 15-month-old mice increased expression of the PGC-1α gene, which is responsible for the regulation of fatty acid oxidation, and the Nrf2 gene, which is responsible for protecting mitochondria by regulating the expression of antioxidants and mitophagy, in the heart. Mildronate activated the expression of genes that regulate glucose metabolism. Probably, this metabolic shift may protect the mitochondria of the heart from the accumulation of acyl-carnitine, which occurs during the oxidation of fatty acids under oxygen deficiency. Both pharmaceuticals impacted the gut microbiome bacterial composition. l-Carnitine increased the level of Lachnoanaerobaculum and [Eubacterium] hallii group, mildronate increased the level of Bifidobacterium, Rikinella, Christensenellaceae. Considered, that these bacteria for protection the organism from various pathogens and chronic inflammation. Thus, we suggested that the positive effects of both drugs on the mitochondria metabolism and gut microbiome bacterial composition may contribute to the protection of the heart during ageing.


Assuntos
Envelhecimento/metabolismo , Fármacos Cardiovasculares/farmacologia , Carnitina/farmacologia , Microbioma Gastrointestinal/fisiologia , Metilidrazinas/farmacologia , Mitocôndrias Cardíacas/metabolismo , Envelhecimento/efeitos dos fármacos , Animais , Bifidobacterium/metabolismo , DNA Mitocondrial/metabolismo , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos
13.
J Integr Neurosci ; 20(2): 287-296, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34258927

RESUMO

A video-oculographic interface is a system for controlling objects using eye movements. The video-oculographic interface differs from other brain-computer interfaces regarding its improved accuracy, simplicity, and ergonomics. Despite these advantages, all users are not equally successful in mastering these various devices. It has been suggested that the genetic characteristics of the operators may determine the efficiency of video-oculographic interface mastery. We recruited healthy users with rs6313, rs2030324, rs429358, rs10119, rs457062, rs4290270, and rs6265 polymorphisms and analyzed the relationships between these polymorphisms and values of success in video-oculographic interface mastery. We found that carriers of the G/G genotype of the rs6265 polymorphism (BDNF gene) demonstrated the best results in video-oculographic interface mastery. In contrast, carriers of the A/A genotype were characterized by large standard deviations in the average amplitude of eye movement and the range of eye movement negatively correlated with goal achievement. This can be explained through the fact that carriers of the A/A genotype demonstrate lower synaptic plasticity due to reduced expression of BDNF when compared to carriers of the G/G genotype. These results expand our understanding of the genetic predictors of successful video-oculographic interface management, which will help to optimize device management training for equipment operators and people with disabilities.


Assuntos
Interfaces Cérebro-Computador , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Tecnologia de Rastreamento Ocular , Desempenho Psicomotor/fisiologia , Adulto , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Adulto Jovem
14.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201885

RESUMO

Aging is one of the most serious factors for central nervous dysfunctions, which lead to cognitive impairment. New highly effective drugs are required to slow the development of cognitive dysfunction. This research studied the effect of dimethyl fumarate (DMF), methylene blue (MB), and resveratrol (RSV) on the cognitive functions of 15-month-old mice and their relationship to the maintenance of mitochondrial quality control in the brain and the bacterial composition of the gut microbiome. We have shown that studied compounds enhance mitochondrial biogenesis, mitophagy, and antioxidant defense in the hippocampus of 15-month-old mice via Nrf2/ARE pathway activation, which reduces the degree of oxidative damage to mtDNA. It is manifested in the improvement of short-term and long-term memory. We have also shown that memory improvement correlates with levels of Roseburia, Oscillibacter, ChristensenellaceaeR-7, Negativibacillus, and Faecalibaculum genera of bacteria. At the same time, long-term treatment by MB induced a decrease in gut microbiome diversity, but the other markers of dysbiosis were not observed. Thus, Nrf2/ARE activators have an impact on mitochondrial quality control and are associated with a positive change in the composition of the gut microbiome, which together lead to an improvement in memory in aged mice.

16.
Arch Biochem Biophys ; 705: 108892, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33930377

RESUMO

Exhaustive physical exercises are potentially dangerous for human's physical health and may lead to chronic heart disease. Therefore, individuals involved in such activity require effective and safe cardioprotectors. The goal of this research was to study Mildronate (a cardioprotective drug) effect on the level of oxidative stress markers in hearts of mice under conditions of exhausting physical exercise, such as forced swimming for 1 h per day for 7 days. Forced swimming lead to mtDNA damage accumulation, increase in diene conjugates level and loss of reduced glutathione despite an increase in antioxidant genes expression and activation of mitochondrial biogenesis. Mildronate treatment reduced oxidative stress, probably due to the inhibition of fatty acids transport to mitochondria and an increase in the intensity of glucose oxidation, which in part confirms by increase in glucose transporter expression. Thus, we can assume that Mildronate is an effective cardioprotector in exhaustive physical exercises.


Assuntos
DNA Mitocondrial/metabolismo , Metilidrazinas/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Condicionamento Físico Animal/efeitos adversos , Animais , Antioxidantes/metabolismo , Citoproteção/efeitos dos fármacos , Masculino , Camundongos
17.
Pestic Biochem Physiol ; 172: 104764, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33518051

RESUMO

Potato (Solanum tuberosum L.) is one of the most common crops in the world, and it is very susceptible to a wide range of pests such as insects and fungi. The use of pesticides often results in the suppression of seed germination and plant growth, in particular, due to their effect on the respiratory chain of mitochondria. There are numerous studies of the effect of pesticides on animal mitochondria, but their interference with the electron transport in plant mitochondria is not well documented. We present the data showing that a number of pesticides inhibit electron flow, and other pesticides uncouple the respiratory chain. Among the studied pesticides engaging the alternative pathways of electron transport, dithianon led to an increase in the rate of H2O2 production but did not cause a strong increase in the amount of mtDNA damage as compared to other pesticides. In general, the main negative effect of the studied pesticides is manifested in a decrease of membrane potential with the maintenance of the rate of oxygen consumption and a low rate of H2O2 production. The mtDNA damage is caused mainly by pesticides belonging to the pyrethroid class and remains minor as compared to its damage in animals. Our data indicate that the respiratory chain of plant mitochondria is more resistant to pesticides as compared to animal mitochondria due to the presence of the alternative pathways of electron transport.


Assuntos
Praguicidas , Solanum tuberosum , Animais , DNA Mitocondrial , Peróxido de Hidrogênio , Mitocôndrias , Praguicidas/toxicidade
18.
PLoS One ; 15(11): e0241784, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33206681

RESUMO

In recent years, methylene blue (MB) has attracted considerable interest as a potential drug for the treatment of methemoglobinemia and neurodegenerative diseases. MB is active against microorganisms from various taxonomic groups. However, no studies have yet been conducted on the effect of MB on the intestinal microbiome of model animals. The aim of this work was to study the effect of different concentrations of MB on the mouse gut microbiome and its relationship with the cognitive abilities of mice. We showed that a low MB concentration (15 mg/kg/day) did not cause significant changes in the microbiome composition. The Bacteroidetes/Firmicutes ratio decreased relative to the control on the 2nd and 3rd weeks. A slight decrease in the levels Actinobacteria was detected on the 3rd week of the experiment. Changes in the content of Delta, Gamma, and Epsilonproteobacteria have been also observed. We did not find significant alterations in the composition of intestinal microbiome, which could be an indication of the development of dysbiosis or other gut dysfunction. At the same time, a high concentration of MB (50 mg/kg/day) led to pronounced changes, primarily an increase in the levels of Delta, Gamma and Epsilonproteobacteria. Over 4 weeks of therapy, the treatment with high MB concentration has led to an increase in the median content of Proteobacteria to 7.49% vs. 1.61% in the control group. Finally, we found that MB at a concentration of 15 mg/kg/day improved the cognitive abilities of mice, while negative correlation between the content of Deferribacteres and cognitive parameters was revealed. Our data expand the understanding of the relationship between MB, cognitive abilities, and gut microbiome in respect to the antibacterial properties of MB.


Assuntos
Azul de Metileno/farmacologia , Animais , Bacteroidetes/genética , Bacteroidetes/metabolismo , Cognição/efeitos dos fármacos , Cognição/fisiologia , Epsilonproteobacteria/genética , Epsilonproteobacteria/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Proteobactérias/genética , Proteobactérias/metabolismo
19.
Brain Sci ; 10(11)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198234

RESUMO

Turnover of the mitochondrial pool due to coordinated processes of mitochondrial biogenesis and mitophagy is an important process in maintaining mitochondrial stability. An important role in this process is played by the Nrf2/ARE signaling pathway, which is involved in the regulation of the expression of genes responsible for oxidative stress protection, regulation of mitochondrial biogenesis, and mitophagy. The p62 protein is a multifunctional cytoplasmic protein that functions as a selective mitophagy receptor for the degradation of ubiquitinated substrates. There is evidence that p62 can positively regulate Nrf2 by binding to its negative regulator, Keap1. However, there is also strong evidence that Nrf2 up-regulates p62 expression. Thereby, a regulatory loop is formed between two important signaling pathways, which may be an important target for drugs aimed at treating neurodegeneration. Constitutive activation of p62 in parallel with Nrf2 would most likely result in the activation of mTORC1-mediated signaling pathways that are associated with the development of malignant neoplasms. The purpose of this review is to describe the p62-Nrf2-p62 regulatory loop and to evaluate its role in the regulation of mitophagy under various physiological conditions.

20.
Pestic Biochem Physiol ; 169: 104675, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32828362

RESUMO

Bumblebees are important for crop pollination. Currently, the number of pollinators is decreasing worldwide, which is attributed mostly to the widespread use of pesticides. The aim of this work was to develop a method for assessing the genotoxicity of pesticides for the Bombus terrestris L. bumblebee using long-range PCR of mitochondrial DNA fragments. We have developed a panel of primers and assessed the genotoxicity of the following pesticides: imidacloprid, rotenone, deltamethrin, difenocanozole, malathion, metribuzin, penconazole, esfenvalerate, and dithianon. All pesticides (except imidacloprid) inhibited mitochondrial respiration fueled by pyruvate + malate; the strongest effect was observed for rotenone and difenocanozole. Three pesticides (dithianon, rotenone, and difenocanozole) affected the rate of H2O2 production. To study the pesticide-induced DNA damage in vitro and in vivo, we used three different mtDNA. The mtDNA damage was observed for all studied pesticides. Most of the studied pesticides caused significant damage to mtDNA in vitro and in vivo when ingested. Our results indicate that all tested pesticides, including herbicides and fungicides, can have a toxic effect on pollinators. However, the extent of pesticide-induced mtDNA damage in the flight muscles was significantly less upon the contact compared to the oral administration.


Assuntos
DNA Mitocondrial , Praguicidas , Animais , Abelhas , Peróxido de Hidrogênio , Mitocôndrias , Polinização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...